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Abstract

Application of scheduling technologies lag significantly behind the state of the art. This
project investigated two contributors to this lag. First, researchers do not know what
makes particular problems difficult for their methods. Second, researchers often develop
methods in isolation from actual data and applications. To address the first, new static
and the first dynamic models of local search algorithms have been developed; these models
partially explain what makes some job shop scheduling problems difficult. For the second,
several algorithms for Air Force Satellite Control Network scheduling have been compared
on historical and recent data. Additionally, a prototype interactive scheduler has been built
that includes the algorithms and alternative objective functions.




Contents
1 Project Objectives

2 Job Shop Scheduling Modeling and Studies
2.1 Evaluation Methodology . . . . . . . . . . ... e
22 StaticModels . . . . . . . . e e e e e
2.3 DynamicModels . . . ... ... ...

3 Air Force Satellite Control Network (AFSCN) Scheduling
3.1 Variants of Range Scheduling with Differing Complexity . . ... ... ... ...
3.2 Algorithms for the Satellite Range Scheduling Problem . . . . ... .. ......
3.3 The Problem Generator . . . . . . . . . . it ittt it
3.4 Multi-Resource Range Scheduling with Alternatives:
Algorithm Analysis and the AFIT Benchmark Problems . . . ... ........
3.4.1 Explaining the Performance on the Benchmarks . . ... .........
3.5 Generalizing the Satellite Scheduling Results: A Preliminary Study . . . . . . . .
3.6 Java Interface to AFSCN Algorithms . . . . . . o o oo v v i v it e e
3.7 Conclusions about AFSCN Range Scheduling . . . ... ... ...........

4 Accomplishments/New Findings
4.1 Job Shop Scheduling Modeling and Studies . . .. .. ...............
4.2 Air Force Satellite Scheduling . . . . . ... ... ... ... . o o

5 Executive Summary
Bl Personnel . . . . . i e e e e e e e e e e e e e e e e e e e e e e e e e e
5.2 Publications . . - . ¢« o v i e e e e e e e e e e e e e e e e e e e e e e e e
5.3 Graduate TheSeS . . . v v v v v i e e e e e e e e e e e e e e e e e e e e e e e e e
54 Other Products . . . . . . v o v it e e e e e e e e e e e e e e e e e e e e e e e

13
15
16
18




1 Project Objectives

Air Force Satellite Control Network (AFSCN) scheduling is a time consuming process re-
quiring a staff of experienced human schedulers. A single day’s schedule may take a week of
work for the human scheduler. A compelling case can be made that automation can reduce
the scheduling time window and provide tools for human schedulers to considerably improve
the efficiency of the resulting schedules. However, efforts to automate even small parts of the
process have had little success. Implementation of automated methods lags far behind the state
of the art in this application.

The primary objectives of this project were to investigate two factors that contribute to this
lag in deploying scheduling methods:

1. a lack of scientific understanding of what makes some scheduling prdblems difficult for
some state-of-the-art methods, and

2. a disparity between the data/domains being used by researchers for algorithm develop-
ment /testing and the data/domains for actual deployed systems.

For both of these, state of the art algorithms were implemented and empirically evaluated on
a variety of problems: benchmark, artificially generated and actual data.

To better understand search algorithm performance, a set of models that relates search
space features to search cost were developed. These models are intended to focus attention on
the most difficult problems, to identify algorithm characteristics that are well suited to such
problems, and to explain why algorithms perform well when they do. The models are intended
to be used to motivate improvements to existing algorithms and motivate selection of particular
algorithms for particular problems.

For this part of the project, Job Shop Scheduling (JSP) was studied because many algo-
rithms have been developed for it and many observations have been published regarding relative
algorithm performance and relative problem difficulty. Our performance models can be used to
explain why certain JSP problems are more difficult and to explain underlying causes of some
published observations.

To address the second objective (the disparity between research and practice), the AFSCN
application was studied. Historical and recent data was obtained to assess how the problem has
changed over time. Problem generators were constructed based on actual data that allow studies
controlling varying problem characteristics. Several algorithms were implemented, which were
thought to be appropriate for solving this application, and their performance was studied on
different problems.

Finally, a prototype interactive scheduling system for AFCSN scheduling was constructed.
Using it, the human scheduler is able to interactively select or reject parts of the schedule and
fix these decisions. The automated system updates, repairs and improves schedules in response
to changes made by the human. The support environment also provides capability of switching
schedule evaluation criteria and algorithms used. Proposed schedules are displayed so that
remaining conflicts can be visualized and alternatives examined. The system is intended to
showcase how the AFSCN human schedulers could be supported and to comparatively evaluate
alternative approaches to partially automating this scheduling.




The remainder of this report is divided into two parts related to these factors. The results of
our work have appeared in the publications listed in section 5.2; the next two sections summarize
the underlying efforts for the two parts. Section 4 enumerates the primary accomplishments
for these two factors.

2 Job Shop Scheduling Modeling and Studies

Job Shop scheduling is perhaps the most studied scheduling application. Over the years,
a wide range of algorithms have been developed for it with attention shifting based on which
algonthm class seemed to be state of the art at any given time. The most consistent class
of performers has been local search (e.g., simulated annealing, iterated local search and tabu
search), with the variants becoming increasingly complicated to obtain superior performance.
Unfortunately, the designs of the algorithms were based largely on experience in working with
the problem and not on a deep model of problem complexity and algorithm performance.

A series of experiments was conducted to model local search algorithms. The aim was to
understand why this class of algorithm appears to excel and to determine what features most
contribute to superior performance. Once these issues were understood, then new principled
algorithms for the problem could be designed.

This section briefly describes the project’s research on evaluation methodology, the models
that were developed for job shop scheduling and the experiments that support them. Full
details of the experiments, models and algorithms can be found in Jean-Paul Watson’s 2003
Ph.D. thesis [35]; several parts have been separately published as referenced in this section.

2.1 Evaluation Methodology

Scheduling algorithms typically are evaluated by comparing their performance to that of
some well known alternatives on well known, difficult benchmark problems. Although it is
standard operating procedure, such methodology limits what can be reasonably inferred about
the performance of the new algorithm and its suitability for particular applications and even
specific problems within applications.

This methodology was studied to better understand its limitations. For example although
benchmark problems provide an objective means of comparing systems, systems can become
overfitted to work well on benchmarks and, therefore, that good performance on benchmarks
does not generalize to real-world problems [45].

Our study showed that definitions of problem difficulty are strongly biased (“it is difficult
if the state-of-the-art algorithm cannot easily solve it”) and are focused on trends rather than
individual variation [39]. “Difficult” problems also may be unrealistic. The best known job
shop scheduling benchmark collection (O.R. library[5]) was produced by generating problems
randomly and then filtering them for problem difficulty. The more difficult random problems
tend to have less structure that could be exploited by heuristics; in effect, the random problems
could be harder than the actual applications [36].

The effects of assumptions underlying comparative evaluation in a related area, planning,
were studied as well [18]. Because the planning community sponsors a biennial competition,
the methodology has been debated and refined publicly; additionally, the systems have been




made public!. These factors simplified a rigorous study of the methodology. Our study exam-
ined the impact of major experiment decisions, e.g., software versions, problem selection, minor
variations on problems, time cut-offs, and hardware differences, on the outcome of comparative
experiments. Thirteen planners were run on approximately 500 benchmark problems and an-
other 1000 permutations of some of them under varying hardware and software environments.
A high level of sensitivity was found to many of the factors, especially those involving the
selection of problems to solve, but surprisingly less sensitivity to time cut-offs and hardware
differences.

2.2 Static Models

Local search algorithms are among the most effective approaches for solving the JSP, yet
there is little understanding of why these algorithms work so well, and under what conditions.
Our project developed static models of problem difficulty for local search for the job shop
scheduling problem [37,38,40]. Static models relate features of search space to search cost;
they are static because they are a post-hoc analysis of the result of search. To the best of our
knowledge, we are the only researchers who have published such models. Further, only one
group of researchers, Mattfeld et al. [20], has analyzed the link between problem difficulty and
local search for the JSP in general.

Problem difficulty has been modeled for the Boolean Satisfiability Problem (SAT). Recent
models account for much of the variance in local search cost observed in a particular class of
random problem instances commonly known as Random 3-SAT [10,23,25]. All of these models
are based on particular features of the search space and on the assumption that a particular
feature, or set of features, is largely responsible for the cost required by a local search algorithm
to locate an optimal solution to a problem instance. The assumption is generally tested via
linear or multiple regression methods, with the regression r? value quantifying the accuracy of
the resulting model.

The models developed for SAT suggested a set of search space features:

e number of optimal solutions,

e backbone size (number of Boolean variables that have the same truth value in all optimal
solutions),

e the distance between initial solutions and the nearest optimal solution, and

e backbone robustness (number of clauses that can be deleted before the backbone size is
reduced by at least half).

These features were translated to JSP. The models were constructed by solving 6 x 4 and 6 x 6
JSP problems (both benchmarks and generated instances) and calculating the above search
space features as well as search cost (how many iterations are required to locate an optimal
solution). Three of the four cost models require computation of all optimal solutions to a

LThis level of uniformity and accessibility is not evident in the scheduling community yet, but a competition
series has recently begun for scheduling sponsored by the French Operations Research Society.




problem instance, which can number in the tens of millions for these problem instances. Search
cost was defined as the median search cost over 5000 independent runs of the algorithms.

The static model characterizes the topology of the search space that local search algorithms
traverse. The local search algorithm was the tabu search algorithm introduced by Taillard [31],
which is denoted by TSTuiiard, because its core was common to state-of-the-art tabu search for
the JSP, but it was simpler and so easier to analyze.

Number of Optimal Solutions Intuitively, a decrease in the number of optimal solutions
(denoted |optsols|) should yield an increase in local search cost. Figure 1 shows scatter-plots
of logyo(|optsols|) versus log;o(costmed) for 6 x 4 and 6 x 6 general JSPs. The r2 values for the
corresponding regression models are 0.5365 and 0.2223, respectively.
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Figure 1: Scatter plots of logyo(|optsols|) versus logyg(costmea) for 6 x 4 (left figure) and 6 x 6
(right figure) general JSPs; the least-squares fit lines are superimposed. The r2 values for the
corresponding regression models are 0.5307 and 0.2231, respectively.

The results presented in Figure 1 indicate that for typical general JSPs, a descriptive cost
model based on |optsols| is relatively inaccurate, accounting for roughly 50% of the variance
in search cost in the best case. In the general JSP, as n/m — oo, the frequency of problem
instances with a large number of optimal solutions increases. By extrapolation, one would then
expect the accuracy of the |optsols| model to increase as n/m — co. In contrast, the accuracy of
the model appears worst for the most difficult class of general JSP (i.e., those with n/m = 1.0),
with model residuals varying over 2 to 3 orders of magnitude.

Backbone Size The definition of a backbone clearly depends on how solutions are repre-
sented. The most common solution encoding used in local search algorithms for the JSP,
including TS7uitiard, is the disjunctive graph [7]. In the disjunctive graph representation, there
are n(n —1)/2 Boolean ‘order’ variables for each of the m machines, each of which represents a
precedence relation between a distinct pair of jobs on a machine. Consequently, the backbone
of a JSP is defined as the set of Boolean order variables that have the same value in all optimal
solutions; the backbone size is defined as the fraction of the possible mn(n—1)/2 order variables
that are fixed to the same value in all optimal solutions, which is denoted by |backbone|.
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Figure 2: Scatter plots of |backbone|? versus log;g(costmeq) for 6 x 4 (left figure) and 6 x 6
(right figure) general JSPs; the least-squares fit lines are superimposed. The r2 values for the
corresponding regression models are 0.5307 and 0.2231, respectively.

Figure 2 shows scatter plots of |backbone|? versus logyo(costmea) for 6x 4 and 6 x 6 general JSPs.
The r2 values for the corresponding regression models are 0.5307 and 0.2331, respectively.

The data show a close correspondence between the r2 values of the |backbone| and |optsols|
models. This phenomenon appears to be due to an extremely high correlation between | backbone]|?
and logyo(|optsols|): —0.9337 and —0.9103 for 6 x 4 and 6 x 6 problems, respectively. Within
each problem group, the correlation is near perfect for instances with large backbones and
gradually decays as |backbone] — 0.0. Our results indicate that, somewhat surprisingly, for
problem instances with moderate-to-large backbones, the backbone size is essentially a proxy
for the number of optimal solutions, and vice-versa. From the standpoint of models of problem
difficulty for reasonably difficult general JSPs (i.e., those with moderate-to-large backbones),
the two features are redundant.

Average Distance Between Random Local Optima Search in algorithms with a strong
bias toward local optima is largely constrained to the subspace of local optima. Consequently,
one would expect search cost in these algorithms to be at least somewhat correlated with the
size of this subspace. For each of our general JSPs, the average normalized distance between
distinct random pairs of local optima (Toptdist) was computed using a set of 5000 random local
optima produced using a steepest-descent procedure. Scatter plots of loptdist versus logyo( costyned)
for 6 x 4 and 6 x 6 general JSPs are shown in Figure 3. The r? values for the corresponding
regression models are 0.2415 and 0.2744, respectively. These results confirm the intuition that
the size of the local optima subspace is correlated with the cost of finding optimal solutions
under TSTuiliard, albeit more weakly than either |optsols| or |backbone| in 6 x 4 general JSPs (i.e.,
72 values of 0.2415 versus 0.5365 and 0.5307, respectively). In contrast to both |optsols| and
|backbone|, the strength of the Toptdist model is largely insensitive to relatively small changes in
the problem dimensions.
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Figure 3: Scatter plots of log;o(Toptdist) Versus costpea for 6 x 4 (left figure) and 6 x 6 (right figure)

general JSPs; the least-squares fit lines are superimposed. The r2 values for the corresponding

regression models are 0.2415 and 0.2744, respectively.

Distance between Random Local Optima and the Nearest Optimal Solution Local
search algorithms for SAT quickly locate suboptimal quasi-solutions in which relatively few
clauses are unsatisfied. These quasi-solutions form a subspace that contains all optimal solu-
tions; once a solution in this subspace is identified, local search is typically restricted to this
subspace. An obvious analog of quasi-solutions in SAT are local optima in the JSP. Another
static model is based on the distance from members of this subspace to the nearest optimum.

To produce this model, 5000 random local optima were generated for each problem using a
steepest-descent procedure. The mean normalized distance between the resulting local optima
and the nearest optimal solution was computed (denoted by diopt-opt). The distances are nor-
malized to enable comparisons between 6 x 4 and 6 x 6 general JSPs and are scaled by square
root to accommodate a slight curvature in the residual plots for small values of diopt-opt- Scatter
plots of \/djopt.opt Versus logio(costmes) for 6 x 4 and 6 x 6 general JSPs are shown in Figure 4.

Clearly, the djopt.opt model is significantly more accurate than any of the |optsols|, |backbone,
or Toptdist models. This model accounts for a substantial proportion of the variance in the cost
of TStaiara in typical general JSP.

Implications and Limitations of the Best Static Model: digpt.opt Empirical evidence
showed that square JSPs (number of machines m approaches the number of jobs n or T =1)
were generally more difficult than rectangular; unfortunately, no one knew why. The djops-opt
model can serve as a partial explanation for that phenomenon.

To model the differences, 10000 general JSPs were generated for m = 3 and n = 4 through
n = 7. Histograms of djp.opt for 4 X 3 and 7 x 3 are shown in Figure 5. In 4 X 3 general
JSPs, the right-tail mass of the distribution is substantial (e.g., for diopt.opt > 0.3), especially
in comparison to the distribution for 7 x 3 general JSPs, where instances with diops.opt > 0.3
are quite rare. Similar histograms for general JSPs with n/m < 1 continue the distribution
mass shift toward 0.5. Although not entirely conclusive, our results provide relatively strong
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Figure 4: scatter plots of \/dispt-0pt Versus logio(costmea) for 6 x 4 (left figure) and 6 x 6 (right
figure) general JSPs; the least-squares fit lines are superimposed. The r? values for the corre-
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Figure 5: Histograms of djopt.opt for 10000 4 x 3 (left figure) and 7 x 3 (right figure) general
JSPs.

evidence that the right-tail mass of the djopt.op¢ distribution vanishes as n/m — oo.

The djopt-opt model has several known limitations. First, the model was developed using
small problem instances, because of the need to exhaustively enumerate local optima. Second,
it is less accurate for problem instances with large values of dipt-opt (OT, equivalently, large
costmed)- Third, the accuracy of the digps—opt model is exceptionally poor for very high-cost,
general JSPs.

Finally, the djopt—opt model is unable to account for a significant proportion of the variance in
the cost of finding optimal solutions of more structured JSPs: e.g., workflow JSPs. Our models
of the different types of JSPs exhibited significant differences in accuracy, which provides even
more evidence that generalizing results based on random problems is risky.
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Figure 6: Histograms of the distance to the nearest optimal solution (dopt) for (a) 100,000
random local optima and (b) 100,000 solutions generated by T'Styiarg for two 10 x 10 random
JSPs.

2.3 Dynamic Models

Static cost models adopt a retrospective view of search; one can, at best, indirectly infer
what might have happened during the search process. In contrast, dynamic models are high-
resolution models of the run-time behavior of search algorithms; these models help to explain
why particular features are correlated with search cost. Consequently, developing dynamic
models appears to be the best way to address the limitations of the static models.

Quasi-Dynamic Models are based on aggregate statistics of run-time behavior. The Elopt_opt
measure is a function of the distribution of the distance between random local optima and the
nearest optimal solution (d,p:). However, as shown in Figure 6, the distribution of d,p; for
solutions visited by T'S7yiltarg during search (right side of figure) differs in both means and
variances from the distribution for random local optima. This phenomenon becomes more
pronounced with larger problems (i.e., distributions are identical for 6 x 4 instances and start
to diverge for 6 x 6), mirroring the reduction in accuracy of the djopt—opt model.

Our quasi-dynamic models [41] replace the mean d,p; for solutions visited during search
(denoted c_lta;,u_opt) for El,,pt-opt. For a given instance, Etabu-opt is computed using a set of 100,000
solutions visited by TS7yiliarg Over a variable number of independent trials. Each trial is
initiated from a random local optimum and terminated once an optimal solution is located.

Regression models of dygpy.opt Versus logig(cqsz) yielded r? values of 0.8441 for our 6 x 4
instances and 0.7808 for our 6 X 6 instances; this corresponds to roughly 4% and 20% increases
in accuracy over that of the Elopt_opt model, respectively. The scatter-plot for the 6 x 6 instances
is shown in the left side of Figure 7. The right side of Figure 7 shows the results on a set of
forty-two computationally tractable 10 x 10 instances; these instances tended to be problematic
for our static models. The regression model of Etabu-opt versus logyg(cqe) for these 10 x 10
instances yielded an r? value of 0.6641, a 41% increase in accuracy over the static model. The
scatter-plot is annotated with data for the five tractable instances of the seven 10 x 10 random
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(right figure) random JSPs; the least-squares fit lines are superimposed.
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Figure 8: Time series of the distance to the nearest optimal solution for the solutions visited
by a random walk (left figure) and T'STyiiiard (right figure) for a typical 10 x 10 random JSP.

JSPs found in the OR Library.

Dynamic Cost Model for Tabu Search Our dynamic cost model for tabu search [41] is a
Markov chain in which each state S; grqq is defined as a pair of (1) the distance i to the nearest
optimal solution and (2) the search gradient grad toward (closer), at the same distance (equal) or
away (farther) from the nearest optimal solution. The addition of search gradient information
was intended to model the impact of short-term memory. Tabu search appears to exhibit such
trending behavior; Figure 8 shows a time series of the distance to the nearest optimal solution
for a random walk (left figure) and TStyiarg (right figure) for a 10 x 10 random JSP. Tabu
search maintains a direction for considerably longer than the random walk. Given a maximum
possible distance of D from a solution to the nearest optimal solution, our Markov model
consists of exactly 3- (D + 1) states (the “+1” state represents the set of optimal solutions).
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The transition probabilities between pairs of states S; ;., and S; grqq are the conditional
probabilities P(Si,gmd' |S;,grad)- The majority of these probabilities obviously equal 0: specifi-
cally, for any pair of states S; grad and S groq With |i — j] > 1, or when simultaneous changes
in both gradient and distance to the nearest optimal solution are logically impossible, such as
from state S cioser t0 state Siy1 cioser- The set of transition probabilities is also subject to the
total-probability constraints:

b d P(Si—l,closerlsi,closer) + P(Si,equallsi,closer) + P(Si+1,farther|Si,closer) =1.0
b P(S'—l,closerlsi,equal) +P(Si,equallsi,equal) + P(Si—{»l,fartherlsi,equal) =10
i P(Si—l,closerlsi,farther) + P(Si,equallsi,farther) + P(Si+1,farther|Si,farther) =1.0

The Markov model includes a reflective barrier at i = D and an absorbing state at i = 0 by
imposing the constraints P(Sp+1,farther|SD,farther) = 0 and P(S0,equail S0,equat) = 1, respectively.
We estimate the set of transition probabilities for a given problem instance by analyzing the
set of solutions visited by TS7,;11ard OVer a large number of independent trials.

Figure 9 shows the estimated probabilities of moving closer to (left figure) or farther from
(right figure) the nearest optimal solution for a typical 10 x 10 random JSP; the probability of
maintaining an equal search gradient is negligible (p < 0.1) for all 4. These results indicate that
tabu search in the JSP can be viewed as a diffusion process with a central restoring force —
the probability of moving closer to (farther from) the nearest optimal solution is proportional
(inversely proportional) to the current distance from the nearest optimal solution. The impact of
short-term memory is also evident in that the probability of continuing to move along the current
gradient is very strong and exceeds 0.5 independently of ¢ for nearly all problem instances.

The search cost predicted by the dynamic cost model is defined as the mean number of iter-
ations until an absorbing state (i.e., a state that is distance 0 from an optimum) is encountered.
To validate the Markov model, the predicted ¢ is estimated, for our 6 x 4, 6 x 6, and 10 x 10
problem sets, by repeatedly simulating the Markov chain defined by D, the set of states S; grads
and the estimated transition probabilities P(S; grad |S;,grad)- For our 6 x 4 and 6 x 6 instances,
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Figure 10: Scatter plots of the observed versus predicted mean cost (¢) to locate an optimal
solution under TS7yiiiarg for 6 x 6 (left figure) and 10 x 10 (right figure) random JSPs; the
least-squares fit lines are superimposed.

logyy-logy, regression models of the predicted versus actual ¢ yielded 72 values of 0.9941 and
0.9939, respectively. Figure 10 shows scatter plots for 6 x 6 and 10 x 10 instances. For the
10 x 10 instances, a log,g-logyo regression model of the predicted versus actual € yielded an r?
value of 0.9877. These results clearly demonstrate that the behavior of Taillard’s algorithm can
be modeled with high fidelity as a simple one-dimensional random walk. In contrast to both
the iopt-opt a0d dtapu-opt models, the Markov model appears scalable. Finally, we note that
our Markov model is equally successful in accounting for the variability in the cost of locating
suboptimal solutions to these same problem instances.

3 Air Force Satellite Control Network (AFSCN) Scheduling

The U.S. Air Force Satellite Control Network (AFSCN) is responsible for coordinating com-
munications between numerous civilian and military organizations and more than 100 satellites.
Space-ground communications are performed via 16 antennas located at 9 ground stations po-
sitioned around the globe. Customer organizations submit task requests to reserve an antenna
at a ground station for a specific time period based on the windows of visibility between tar-
get satellites and available ground stations. Alternate time windows and ground stations may
also be specified. As of 2000, over 500 task requests are received by the AFSCN scheduling
center for a typical day. The communication antennas are over-subscribed in that many more
task requests are received than can be accommodated. Currently, human scheduling experts
construct an initial schedule that typically leaves about 120 conflicts representing task requests
that are unsatisfiable. However, satellites are extremely expensive resources, and the AFSCN
is expected to maximize satellite utilization; out-right rejection of task requests is not a viable
option. Consequently, human schedulers must engage in a complex, time-consuming arbitration
process between various organizations to eliminate all conflicts present in the initial schedule.
The generic problem of scheduling task requests for communication antennas is referred to as
the Satellite Range Scheduling Problem [24].
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In reality, the processes and criteria that human schedulers use to develop conflict-free
schedules are generally implicit and difficult to quantify, making automation extremely diffi-
cult. Instead, much of this research has focused on a single, although crucial, aspect of the
problem: minimizing the number of conflicts in the initial schedule. Minimizing the number
of conflicts up-front reduces (1) the workload of human schedulers, (2) communication with
outside agencies, and (3) the time required to produce a conflict-free schedule. By emphasizing
conflict minimization, we ignore many important aspects of an extremely complex real-world
problem. For example, although a conflict-free schedule is produced at least 24 hours before
execution, roughly one-third of the scheduled task requests might be modified because of real-
time considerations such as high-priority emergency task requests or breakdowns at the ground
station [24]. Conflict-minimization for Satellite Range Scheduling is emphasized as a core ca-
pability because the process lends itself to automation and because conflict minimization has
been the focus of virtually all other researchers.

To put the application in context, Satellite Range Scheduling has been related to other well-
known and studied scheduling problems. To do this, Satellite Range Scheduling (or, for brevity,
“Range Scheduling”) can be expressed in two forms: Single-Resource Range Scheduling (SRRS)
and Multi-Resource Range Scheduling (MRRS). In Single-Resource Range Scheduling, there is
only one resource (i.e., antenna) that is being scheduled; Multi-Resource Range Scheduling
includes tasks that can potentially be scheduled on one of several alternative resources. A
special case of Multi-Resource Range Scheduling occurs when the various tasks to be scheduled
can be decomposed into multiple but independent single-resource range scheduling problems
where there are no interactions between resources. Generally, however, alternatives are actually
on different resources.

The problem of minimizing the number of unsatisfied task requests on a single antenna
(SRRS) is equivalent to minimizing the number of late jobs on a single machine; this problem
is known to be N'P-complete. This result has been used to formally establish that Range
Scheduling is also N'P-complete [4]. Nevertheless, finding optimal or near optimal solutions to
many realistic, single-resource problem instances is relatively easy. For some reasonable size
problems, branch and bound methods can be used to either find or confirm optimal solutions.

Both exact methods (e.g., branch and bound methods) and heuristic methods, which were
taken from the single machine scheduling literature to address the problem of Single-Resource
Range Scheduling, have been implemented and studied in our project. These methods have
been compared to scheduling algorithms found in the satellite scheduling literature. The Range
Scheduling specific methods were largely designed for Multi-Resource Scheduling, and in fact,
the single machine scheduling heuristics generally out-perform the best algorithms specifically
designed for Range Scheduling when compared on Single-Resource Range Scheduling problems.

The majority of the research has focused on the Multi-Resource Range Scheduling problem.
MRRS is not a single, well defined problem, but rather an on-going application in a dynamic
environment. Previous researchers at the Air Force Institute of Technology (AFIT) tested their
algorithms on actual data from 1992 (the “AFIT benchmark”). An important issue is whether
the results from those data hold for current application conditions. For example, in 1992,
approximately 300 requests needed to be scheduled for a single day, compared to 500 requests
per day in recent years. More requests for the same resources have a clear impact on problem
difficulty, but the pattern of usage (e.g., distribution of tasks across resources) may also have
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changed. Recent data were obtained for the application?, and algorithms were compared on
both AFIT (from 1992) and current data to investigate whether the problems in the AFIT
benchmarks are representative of the kinds of Range Scheduling problems that are currently
encountered by AFSCN.

From our study, it appears that the AFIT benchmarks are simple in the sense that a heuristic
can be used to quickly find the best known solutions to these problems. The heuristic splits the
tasks to be scheduled into “low-altitude satellite” requests and “high-altitude satellite” requests.
Because low-altitude satellite requests are highly constrained, these requests are scheduled first.
A theorem and proof have been presented showing that when a set of low-altitude requests is
restricted to specific time slots, a greedy scheduling method exists that is optimal. The proof
allows tasks to be scheduled on multiple alternative resources as long as the resources have
identical capabilities. These results suggest that further research using the AFIT benchmarks
could be misleading because these problems do not represent the kinds of scheduling problems
that are currently faced by AFSCN.

Multi-Resource Range Scheduling problems, including current Range Scheduling problems
(based on 2003 data obtained from Schriever), exist where simple heuristics do not yield optimal
results. For larger problem instances, the heuristic of splitting tasks into low and high-altitude
requests is no longer a good strategy. Additionally, in contrast to results on the SRRS problem,
results on these large problems are consistent with the findings of Parish [22]: the Genitor
algorithm outperforms other heuristics on the larger problem instances. Thus, it appears that
although the algorithms previously tested for the Satellite Range Scheduling problem do not
excel on the SRRS problem, these algorithms do generalize to more modern versions on the
MRRS problem.

3.1 Variants of Range Scheduling with Differing Complexity

While the general problem of Satellite Range Scheduling is NP-complete, special subclasses
of Range Scheduling are polynomial. Burrowbridge (1999) considers a simplified version of the
single-resource range scheduling problem, where only low-altitude satellites are present, and
the objective is to maximize the number of scheduled tasks. Due to the orbital dynamics of
low-altitude satellites, the task requests in this problem have negligible slack; i.e., the window
size is equal to the request duration. The well-known greedy activity-selector algorithm [11] is
used to schedule the requests since it yields a solution with the maximal number of scheduled
tasks.

Range Scheduling for low-altitude satellites has been proven to have polynomial time com-
plexity even if multiple resources are options [4]. In particular, this occurs in the case of
scheduling low-altitude satellite requests on one of the k antennas present at a particular ground
station. For the proof, the k¥ antennas must represent equivalent resources.

The greedy activity-selector algorithm for multiple resource problems was modified as fol-
lows: the algorithm still schedules the requests in increasing order of their due date, however,
it specifies that each request is scheduled on the resource for which the idle time before its
start time is minimum. Minimizing this idle time is critical to proving the optimality of the

2We wish to thank Brian Bayless and William Szary from Schriever Air Force Base for the data and the
feedback on our interpretation of the data files.
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greedy solution. This algorithm, Greedyg (where IS stands for Interval Scheduling), is optimal
for scheduling the low-altitude requests. The problem of scheduling the low-altitude requests
is equivalent to an interval scheduling problem with k identical machines (for more on interval
scheduling, see Bar-Noy et al.[3], Spieksma [27], Arkin et al.[1]). It has been proven that for the
interval scheduling problem, the extension of the greedy activity-selector algorithm is optimal;
the proofs are based on the equivalence of the interval scheduling problem to the k-colorability
of an interval graph [9].

3.2 Algorithms for the Satellite Range Scheduling Problem

Various heuristic algorithms have been applied to both Single-Resource Range Scheduling
and Multi-Resource Range Scheduling. Algorithms for simpler problems are reviewed first;
then algorithms for the more realistic Multi-Resource Range Scheduling are presented. The
algorithms have been tested using the AFIT benchmarks, data from a problem generator, and
actual data from Schriever Air Force Base from spring 2002 to spring 2003.

Branch-and-Bound Algorithm for Single-Resource Range Scheduling starts by com-
puting a lower bound on the number of late tasks v. Branch-and-bound is then applied to the
decision problem of finding a schedule with v late tasks. If no such schedule can be found, v
is incremented, and the process is repeated. When solving the decision problem, at each node
in the search tree, the branching scheme selects an unscheduled task and attempts to schedule
the task. The choice of the task to be scheduled is made based on a heuristic that prefers small
tasks with large time windows over large tasks with tight time windows. Dominance properties
and constraint propagation are applied; then the feasibility of the new one-machine schedule
is checked. If the schedule is infeasible, the algorithm backtracks, and the task is considered
late. Our version is derived from the Baptistie et al. [2] algorithm. Our experiments show
this algorithm can solve only relatively small single-resource problems and cannot be used for
AFSCN problems.

Constructive Heuristic Algorithms begin with an empty schedule and iteratively add
jobs to the schedule using local, myopic decision rules. These heuristics can generate solutions
to even large problem instances in subsecond CPU time, but because they typically employ no
backtracking, the resulting solutions are generally suboptimal. Constructive search algorithms
were developed for SRRS based on texture-based [6] and slack-based [26] constraint-based
scheduling heuristics. It was found that texture-based heuristics are effective when the total
number of task requests is small (e.g., n < 100) for SRRS, but straightforward extensions of
constraint-based technologies for multiple resources with alternatives (MRRS) did not appear
to be effective. These results were somewhat surprising. Several researchers in Artificial Intelli-
gence and several industrial companies focus on the use of constructive methods. Our research
indicates, however, that the constraints for Multi-Resource Range Scheduling problems are such
that the cascade of task interactions cause the number of interactions to grow exponentially.

Local Search and Tabu Search begin with one or more complete solutions; search proceeds
via successive modifications to a series of complete solution(s). All local search algorithms for

16




this project encode solutions using a permutation 7 of the n task request IDs (i-e., [1..n]). Akey
component of any local search algorithm is the move operator. Because little problem-specific
knowledge is available for Range Scheduling, we have selected a move operator known as the shift
operator because it has been successfully applied to a number of well-known scheduling problems
[30]. Given its relatively large neighborhood size, the shift operator is used in conjunction with
next-descent hill-climbing. The neighbors of the current solution are examined in a random
order, and the first neighbor with either a lower or equal fitness (i.e., number of bumps) is
accepted. Search is initiated from a random permutation and terminates when a prespecified
number of solution evaluations is exceeded.

Straightforward implementations of Tabu search [15] for Multi-Resource Range Scheduling
were also developed, but the resulting algorithms were not competitive. The size of the local
search neighborhood using shift and other well-known problem-independent move operators is
of order O(5002). With such a large neighborhood, tabu search and other forms of neighborhood
local search are impractical. Methods for reducing the neighborhood size were explored, but
performance was extremely poor.

The Genitor Genetic Algorithm Previous studies of Range Scheduling by AFIT re-
searchers indicate that the Genitor genetic algorithm [13] provides superior overall performance
[22]. The version of the Genitor used here was originally developed for a warehouse scheduling
application [42,44], but it has also been applied to problems such as job shop scheduling [33].

As in local search, solutions are encoded as permutations of the task request IDs. Like all
genetic algorithms, Genitor maintains a population of solutions. In each step of the algorithm,
a pair of parent solutions is selected, and a crossover operator is used to generate a single child
solution, which then replaces the worst solution in the population. The result is a form of
elitism, in which the best individual produced during the search is always maintained in the
population. Selection of parent solutions is based on the rank of their fitness, relative to other
solutions in the population. A linear bias is used such that individuals that are above the
median fitness have a rank-fitness greater than one and those below the median fitness have a
rank-fitness of less than one [43].

Typically, genetic algorithms encode solutions using bit-strings, which enable the use of
“standard” crossover operators such as one-point and two-point crossover [16]. Because so-
lutions in Genitor are encoded as permutations, a special crossover operator is required to
ensure that the recombination of two parent permutations results in a child that (1) inherits
good characteristics of both parents and (2) is still a permutation of the n task request IDs.
Following Parish (1994), the current implementation uses Syswerda’s (relative) order crossover
operator, which preserves the relative order of the elements in the parent solutions in the child
solution. Syswerda’s crossover operator has been successfully applied in a variety of scheduling
applications [28,34,29).

Schedule Builder is used to generate solutions from a permutation of request IDs. The
schedule builder considers task requests in the order that they appear in 7. For SRRS, the
schedule builder attempts to schedule the task request within the specified time window. For the
MRRS, each task request is assigned to the first available resource (from its list of alternatives)
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Customer Predictability | Fract. of Regs. for Each
Type ' Request Type

HS |PD | PC | Mu
Operations and Maintenance 0.9 085 (00| 0.1 | 0.05
Image Intelligence 0.3 00 [05] 05 | 0.0
Signal Intelligence 0.7 0.05 01|08 | 0.0

Table 1: Customer types.

and at the earliest possible starting time. If the request cannot be scheduled on any of the
alternative resources, it is dropped from the schedule (i.e., bumped). The evaluation of a
schedule is then defined as the total number of requests that are scheduled (for maximization)
or inversely, the number of requests bumped from the schedule (for minimizing). The schedule
builder translates the solutions of the local search and Genitor algorithms.

3.3 The Problem Generator

A good problem generator was necessary to carefully evaluate many algorithms across a wide
range of scheduling conditions. A generator was needed because there is a very limited amount
of real data available for the AFSCN scheduling domain and to provide experimental control.
The problem generator was developed based on the characteristics of the AFSCN application in
general and the features of the SRRS problems, the AFIT benchmark problems, and the recent
data, specifically. The AFSCN schedules task requests on a per-day basis. Parameters model
different types of requests encountered in the real-world satellite scheduling problem, such as
downloading data from a satellite, transmitting information or commands from a ground station
to a satellite, and checking the health and status of a satellite. The requests are classified into
four possible types:

e State of health (HS): short (5-15 minutes), flexible, common

e Maneuver (Mu), for example changing the orbit of a satellite: longer (20-60 minutes),
inflexible, rare

e Payload download (PD), for example downloading data from the satellite: long (10-30
minutes), more flexible, common

e Payload commanding (PC): variable length (5-60 minutes), flexible, common

This taxonomy is based on the fact that requests of a certain type share characteristics of dura-
tion, flexibility (the size of the time window versus the duration of the request) and frequency?.

As a second feature, the new generator introduces models for customer behavior. Three
customer types are defined (see Table 1), based on the fact that, for example, some customers
will mostly generate health and status requests or payload command requests. For each cus-
tomer, the number of requests to be generated is determined as a fraction of the total number

3For now, periodic requests are not modeled and therefore do not use the frequency information.
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Figure 11: This figure illustrates how the Genitor algorithm scales compared to local search and
a random sampling based method as problem size increases from 300 requests to 500 requests.

of requests. Customer patterns specify a time window midpoint, a resource, and the type of
request. Customer patterns model the previous behavior of a customer (which could have been
collected from past schedules). A database of customer patterns is used to produce the requests.
For each customer type, the fraction of the requests generated for each request type and the
Predictability are defined. The Predictability for each customer represents the fraction of
requests that will be generated for this customer using customer patterns from the database.
The rest of the requests corresponding to each customer will be randomly generated. The du-
ration and window size for each request are determined using the parameters associated with
the request type. The process of generating the requests in the new generator is described in
the following publication [4].

This new generator facilitates testing scalability of algorithms and focuses efforts on those
algorithms that can handle more realistic problem scenarios, both in terms of size and com-
plexity. Figure 11 shows how the Genitor algorithm scales compared to local search and a
random sampling based method as problem size increases from 300 requests to 500 request.
These results suggest that Genitor scales better.

3.4 Multi-Resource Range Scheduling with Alternatives:
Algorithm Analysis and the AFIT Benchmark Problems

Heuristics for Satellite Range Scheduling have previously been evaluated using only the
seven problem instances in the AFIT benchmark. Although the set includes both high and low-
altitude satellite requests along with alternatives, the low-altitude requests in these problems
can be scheduled only at one ground station (by assigning it to one of the antennas present
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Genitor Hill Climbing Random Sampling || Greedy || MIP
Day || Min | Mean | Stdev || Min | Mean | Stdev || Min | Mean Stdev
1 8 |86 0.49 15 | 18.16 | 2.54 21 | 227 087 20 10
2 4 |4 0 6 |10.96 |2.04 11 | 13.83 | 1.08 19 6
3 3 303 |0.18 11 | 154 | 2.73 16 | 17.76 | 0.77 24 7
4 2 206 |025 12 | 17.43 | 2.76 16 | 20.20 | 1.29 20 7
5 4 141 0.3 12 | 16.16 | 1.78 15 | 17.86 | 1.16 18 6
6 6 |6.03 |018 15 | 18.16 | 2.05 19 | 20.73 | 0.94 27 7
7 6 |6 0 10 | 141 | 2.53 16 | 16.96 | 0.66 22 6

Table 2: Performance of Genitor, hill climbing, and random sampling on the AFIT bench-
mark problems, in terms of the best and mean number of bumped requests. All statistics are
taken over 30 independent runs. The results of running a greedy heuristic (Greedypp) are also
included. The last column reports the performance of Schalck’s MIP algorithm.

at that ground station). The number of requests to be scheduled for the seven problems are
322, 302, 300, 316, 305, 298, and 297, respectively. Since 1992, the number of requests received
during a typical day has increased substantially (to more than 500 each day in recent years),
while the resources have remained more or less constant.

To confirm the reported results from Parish’s study [22], Genitor was run on each of the
seven problems in the benchmark, using the same parameters. Random sampling and hill-
climbing were also run on each AFIT problem, with a limit of 8000 evaluations per run. Each
algorithm performed a total of 30 independent runs on each problem. The results are summa-
rized in Table 2. Included in the table are the results obtained by Schalck using Mixed Integer
Programming (MIP) [24]. As previously reported, Genitor yields the best overall performance.
A greedy heuristic method produced the worst performance (it is often outperformed by ran-
dom sampling). Scheduling the primary requests in a greedy fashion drastically narrows the
opportunities of scheduling the rest of the requests using the alternative resources.

3.4.1 Explaining the Performance on the Benchmarks

To exploit the differences in scheduling slack and the number of alternatives between low and
high-altitude requests, a new greedy heuristic (which we call the “split heuristic”) was designed
to first schedule all the low-altitude requests in the order given by the permutation, followed by
the high-altitude requests. Experiments have shown that: (1) for more than 90% of the best-
known schedules found by Genitor, the split heuristic does not increase the number of conflicts
in the schedule, and (2) the split heuristic typically produces good (and often best-known)
schedules.

From our analysis, it appears that Genitor learns to schedule the low-altitude requests
before the high-altitude requests, leading to the strong overall performance. By separating the
requests from the permutations produced by Genitor into low and high-altitude requests, the
evaluation of more than 80% of the schedules remains unchanged.

As a followup, it was proven that the low altitude requests are scheduled optimally by G’emtor
Since the split heuristic divides the low and high-altitude requests, the low-altitude requests
(with no slack and no alternative windows for scheduling) correspond to multiple instances of

20




100 T T T T g T 350

ool 3001

2501

CPU time
- N
3 8

Percentage of Requests Scheduled
2
Q

(<]
o
T

Genitor Genitor-§ LS LS-8 RS RS-S

o Genitor  Genitor-S LS iLs-8 RS RS-S

Figure 12: Algorithm performance for the seven AFIT benchmark problems.

SRRS problems with no slack and no time windows; therefore, these requests can be optimally
scheduled when considered in isolation.

This result motivated the construction of a new version of Gooley’s algorithm (which was
developed for a M.S. thesis at AFIT) that is provably guaranteed to be as good as or better than
Gooley’s original algorithm. Gooley’s algorithm uses Mixed Integer Programming (MIP) to
schedule the low-altitude requests. It defines complex heuristics to obtain a permutation order
of the high-altitude requests and to implement a schedule builder based on this permutation. His
schedule builder inserts the high-altitude requests into the schedule (already containing the low-
altitude requests) and then moves around requests in an attempt to schedule the unscheduled
requests. An improved version of the heuristics used by Gooley’s algorithm to schedule the
high-altitude requests was also implemented.

An analysis of the influence of the initial permutation and of the schedule builder on Goo-
ley’s algorithm performance showed that our schedule builder results in fewer conflicts than
Gooley’s schedule builder when applied to the same permutation (the initial permutation built
by Gooley’s algorithm). Also, given one of the permutations evaluated by our schedule builder
as the best solution obtained for that problem (smallest number of conflicts), Gooley’s schedule
builder results in more conflicts. '

3.5 Generalizing the Satellite Scheduling Results: A Preliminary Study

To generalize the results obtained for Satellite Range Scheduling (SRS), a similar oversub-
scribed scheduling problem needed to be identified. The Management of the Missions of the
Earth Observation Satellites ¢ is a challenge problem put forth by the French Operations Re-
search Society. The problem data are publicly available, as are the solutions found by other
researchers.

“Data and problem description are available at
http:/ /www.prism.uvsq.fr/ vdc/ROADEF/CHALLENGES/2003/challenge2003-en.html.
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For this new application, observation requests are collected from the customers. An obser-
vation request refers to some specified area on the Earth surface. The request is transformed
into a set of strips covering the area. For each strip, two directions of acquisition are possible;
one needs to be selected. A large number of requests is received for each day; typically they
cannot be all satisfied. Setup times between pairs of acquisitions are specified. Also stereo
requests are present (pairs of requests that both need to be scheduled, using the same direction
of acquisitions). A solution specifies a feasible sequence of images to be acquired such that
customer satisfaction is maximized. The objective function is the sum of the gains associated
with the complete or partial acquisition of a request.

The availability of the new application allows us to investigate the influence of various
problem features present in oversubscribed scheduling on algorithm performance, posing the
question: Do the results obtained for SRS generalize for this similar problem? A simple greedy
heuristic was designed and implemented for this problem. Also implemented was a local search
algorithm that has been used in previous research for this problem [19]. A new objective
function was implemented for Genitor.

As with the AFSCN application, Genitor outperformed the greedy heuristics and the local
search algorithm. These results are preliminary; better results have been reported for this prob-
lem but the public posting does not list what algorithms produced those results. Preliminary
results have also been obtained using a different objective function: minimizing the idle time
(all the requests are scheduled on a single satellite).

3.6 Java Interface to AFSCN Algorithms

To facilitate examining solutions and obtaining feedback from actual schedulers, a Java
GUI was built. The GUI allows the user to load in data from real or generated problems
and to select an algorithm for scheduling. The resulting solution is displayed in an interface
that lists each resource (antenna at a ground station) as a separate line. Optionally, bumped
tasks can be displayed in red below the scheduled jobs so that the overlaps can be examined.
Characteristics of scheduled and bumped tasks can be examined and changed (by clicking on
the task number) if the user wishes. For example, if a task could be fit in if its start time were
increased by a minute, the user could reset the start time, run the scheduler again and observe
any improvement.

Figure 13 shows the interface; the primary display is zoomed in to show the tasks that have
been scheduled on seven of the antennaes. Times are listed below each line of jobs. Pull down
menus at the top allow the user to change the algorithms being used, to load in other files,
examine the set of bumped jobs, or change aspects of the display. The data were taken from
actual requests from one day during spring 2003. ’

The interface also allows the user to examine alternative schedules or to manually fix portions
of a schedule. For example, priority is not a factor considered while scheduling; the user can
identify what is, in his opinion, a high priority job and force it to be placed in the schedule.
When the scheduling algorithm is rerun, it will treat that assignment as given and schedule
around it.
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Figure 13: Java GUI for generating and examining AFSCN schedules. .

3.7 Conclusions about AFSCN Range Scheduling

The Satellite Range Scheduling Problem is an important real-world problem that impacts
the use of expensive and limited resources. The study of this application has been structured
as a progression. The progression started with a simple version of the problem, where only one
resource was present. Next a version of the problem studied at AFIT was introduced. Then
recent data was examined. Finally, for planning and experimental control purposes, a new
problem generator was built that generalizes features found in the initial two versions of the
problem studied and introduces new realistic features.

Although optimal algorithms have been developed for a restricted set of the SRRS problem,
in general SRRS is NP-hard. It has been proven that no polynomial time algorithm exists for
MRRS (unless the complexity class P = NP). Additionally, the simple heuristics that proved
so effective in the SRRS do not scale well to MRRS, especially for realistically sized problems.

Parish’s earlier results with Genitor on AFTT’s 1992 benchmarks have been shown to scale-
up to the more realistic contemporary problems. It was also shown that Genitor performed so
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well on the AFIT problems because it effectively learned to split the problems into low and
~ high altitude requests, scheduling them separately. In fact, the seven problems in the AFIT
benchmark are trivial to solve when a simple heuristic based on this separation is used.

However, when applied to more realistic problems, the split heuristic results in poor-quality
solutions. Consequently, Genitor must be learning a different strategy for solving the contem-
porary problems. Experiments show that the Genitor algorithm yields better results compared
to every other scheduling system we have tested on the real data set from Schriever.

4 Accomplishments/New Findings

This section lists the major results of our project organized by the two primary efforts.
Our research on static models for JSP was awarded the PLANET (European network of ex-
cellence in AI planning) prize for research excellence in 2001. Darrell Whitley gave a keynote
address about our work at Fifth International Conference on Adaptive Computing in Design
and Manufacturing (ACDM 2002) in Exeter, England in April 2002.

4.1 Job Shop Scheduling Modeling and Studies

e Several studies of scheduling and planning have shown that algorithm results on a set
of benchmark problems do not necessarily generalize: either to a larger set of synthetic
problems or to more realistic problems. Additionally, the assumptions of comparative
evaluation need to be carefully considered when making claims of generality.

e The search space features known to influence the cost of local search in SAT, specifically
the number of optimal solutions (|optsols]) and the mean distance between random solu-
tions and the nearest optimal solution (djgpt-opt), also influence the cost of locating optimal
solutions using tabu search in the JSP. Further, the strength of the influence of these two
factors is nearly identical in both problems. As in SAT, we find that dj,ps.opt has a much
stronger influence than |optsols| on search cost in the JSP and ultimately accounts for a
significant proportion of the variance in search cost observed for a set of identically sized
problem instances. This result was somewhat unexpected given the differences between
the search spaces and local search algorithms of the JSP and SAT.

e For JSPs with moderate to large backbones, the correlation between backbone size and
the number of optimal solutions is extremely high. As a direct consequence, for these
problems, backbone size provides no more information than the number of optimal solu-
tions, and vice versa: one of the two factors is necessarily redundant. Given the recent
surge of interest in the link between backbone size and problem difficulty, the strong
one-to-one correspondence between these two factors was completely unanticipated.

e No interaction effect was found between the backbone size and djops.opt- Further, de-
scriptive cost models based on either multiple factors or interacting factors are no more
accurate that the simple model based solely on djyps.opt-

24




4.2

A simple extension of the djops-opt descriptive cost model accounts for most of the variance
in the cost of finding suboptimal solutions to the JSP. This extension is the first quanti-
tative model of the cost of locating suboptimal solutions to any N P-complete problem,
and provides an explanation for the existence of ‘cliffs’ in the cost of finding suboptimal
solutions of varying quality.

For some time, researchers have observed that ‘square’ JSPs are generally more difficult
than ‘rectangular’ JSPs. This phenomenon is likely due to differences in the distribution of
diopt-opt for the two problem types. For square JSPs, the proportion of problem instances
with large values of djopt-opt is substantial, while most instances of rectangular JSPs have
very small values of di,pt-opt-

The accuracy of the Elopt-opt model can be significantly improved by considering the set
of solutions visited by Taillard’s algorithm during search.

Taillard’s algorithm can be modeled with exceptionally high fidelity using a surprisingly
simple Markov chain whose states represent both the current distance from the nearest
optimal solution and the current search gradient, i.e., whether search is progressing toward
or away from the nearest optimal solution. The Markov model accounts for nearly all of
the variability in the cost required to locate optimal solutions to both small (6 x 4, 6 x6)
and large (10x10) random JSPs. The model also provides insight into the exact conditions
under which different initialization methods can be expected to improve performance.

The relationship between the Markov and Elopt-opt models has been characterized, which
enables us to account for why djopi-opt is so highly correlated with search cost.

Air Force Satellite Scheduling

The 1992 AFIT benchmarks for the AFSCN Satellite Range Scheduling problem are
simple in the sense that a heuristic was developed that quickly finds the best-known
solutions to these problems. However, for larger problems, such as those faced by AFSCN
today, simple heuristic solutions are inadequate.

Range Scheduling for low-altitude satellites has been proven to have polynomial time
complexity even if multiple resources are options. However, Satellite Range Scheduling
in the general case has been proven to be NP-hard.

A problem generator was developed based on the characteristics of the AFSCN applica-
tion. This problem generator has allowed us to show how problem difficulty increases as
the number of requests that needs to be assigned also increases. The problem generator
also allows the Pls to evaluate how algorithm performance scales on larger size problems.

The Genitor genetic algorithm produces the best results for minimizing the number of
conflicts, especially on large problems and actual data from Schriever.

Gooley’s algorithm, which was developed at AFIT, does not appear to scale well to the size
and structure of recent problems. A study of the influence of the initial permutation and of
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the schedule builder on Gooley’s algorithm performance showed that our schedule builder
results in fewer conflicts than Gooley’s schedule builder when applied to the permutation
constructed as part of Gooley’s algorithm.

o A Java interface was developed so that the system could be demostrated for schedulers
working at Schriever Air Force Base. The interface also provided insights into what
schedules look like and how conflicts might be resolved in order to repair a conflicted
scheduler.

e Several scheduling algorithms have been developed and evaluated for a similar oversub-
scribed scheduling problem, The Management of the Missions of the Earth Observation
Satellites. In a preliminary study, the Genitor genetic algorithm outperformed greedy
heuristics and a local search algorithm.

5 Executive Summary

5.1 Personnel

During the grant period, the following personnel were supported at the indicated level:
Pls:

Adele Howe 3.69 months
L. Darrell Whitley  3.27 months
Research Assistants:
Laura Barbulescu 22.16 full-time months (9 full, 26.33 half-time)
Jean-Paul Watson  19.9 full-time months (9 full-time, 21.8 half-time)

5.2 Publications

e L. Barbulescu, J.P. Watson, D.L. Whitley, A.E. Howe. “Scheduling Space-Ground Com-
munications for the Air Force Satellite Control Network”, accepted to Journal of Schedul-
ing.

o J.P. Watson, A.E. Howe, L.D. Whitley. 2003. “An Analysis of Iterated Local Search for
Job-Shop Scheduling”, To appear in Proceedings of the Fifth Metaheuristics International
Conference (MIC 2003), September.

e J.C. Beck, J.P. Watson. 2003. “Adaptive Search Algorithms and Fitness-Distance Corre-
lation”. To appear in the Proceedings of the Fifth Metaheuristics International Conference
(MIC-2003), September.

e J.P. Watson, L.D. Whitley, A.E. Howe. 2003. “A Dynamic Model of Tabu Search for the
Job-Shop Scheduling Problem”, To appear in the First Multidisciplinary International
Conferece on Scheduling, August.

e J.P. Watson, J.C. Beck, A.E. Howe, L.D. Whitley. 2003. “Problem Difficulty for Tabu
Search in Job-Shop Scheduling”, In Artificial Intelligence, Vol. 143, No. 2, pp. 189-217,
February.
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e L. Barbulescu, A.E. Howe, J.P. Watson and L.D. Whitley. 2002. “Satellite Range Schedul-
ing: A Comparison of Genetic, Heuristic and Local Search”, In Proceedings of The Seventh
International Conference on Parallel Problem Solving from Nature(PPSNVII), Granada,
Spain, September.

e L.D. Whitley, J.P. Watson, A. Howe and L. Barbulescu. 2002. “Testing, Evaluation and
Performance of Optimization and Learning Systems”, Keynote Address at Fifth Interna-
tional Conference on Adaptive Computing in Design and Manufacturing (ACDM 2002),
Exeter, England, April.

e A.E. Howe and E. Dahlman. 2002. “A Critical Assessment of Benchmark Comparison in
Planning”, In Journal of Artificial Intelligence Research, Vol. 17, pp. 1-33, July.

e J.P. Watson, L. Barbulescu, L.D. Whitley, A.E. Howe. 2002. “Contrasting Structured
and Random Permutation Flow-Shop Scheduling Problems: Search Space Topology and
Algorithm Performance”, In INFORMS Journal on Computing, Vol. 14, No. 1, Spring.

e D. Whitley. 2001. An Overview of Evolutionary Algorithms. Journal of Information and
Software Technology. 43:817-831. B

e J.P. Watson, J.C. Beck, A.E. Howe, and L.D. Whitley. 2001. “Toward a Descriptive
Model Of Local Search Cost in Job-Shop Scheduling”, In Proceedings of Sizth European
Conference on Planning (ECP’01), Toledo, Spain, September.

e J.P. Watson, J.C. Beck, A.E. Howe and L.D. Whitley. 2001. “Toward a Descriptive Model
of Local Search Cost in Job-Shop Scheduling”, In Working Notes of IJCAI-01 Workshop
on Stochastic Search Algorithms, Seattle, WA, August.

e J.P. Watson, A.E. Howe. 2000. “Focusing on the Individual - Why We Need New Methods
for Characterizing Problem Difficulty”, In Working Notes of ECAI 2000 Workshop on
Empirical Methods in Artificial Intelligence, Berlin, Germany, August.

5.3 Graduate Theses

One of the graduate research assistants will be completing his Ph.D. during summer 2003
and starting work at Sandia National Laboratory in early August. His thesis addresses issues
central to the grant. The document can be obtained from the author or from Colorado State
University.

“Empirical Modeling and Analysis of Local Search Algorithms for the Job-Shop
Scheduling Problem” Ph.D. Thesis by Jean-Paul Watson in Summer 2003. Abstract:

Local search algorithms are among the most effective approaches for locating high
quality solutions to a wide range of combinatorial optimization problems. However,
our theoretical understanding of these algorithms is very limited, leading to signifi-
cant problems for both researchers and practitioners. Specifically, the lack of a the-
ory of local search impedes the development of more effective algorithms, prevents
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practitioners from identifying the algorithm most appropriate for a given problem,
and allows widespread conjecture and misinformation regarding the benefits and/or
drawbacks of particular algorithms. This thesis represents a significant step toward
a theory of local search. Using empirical methods, we develop theoretical models
of the behavior of four well-known local search algorithms: a random walk, tabu
search, iterated local search and simulated annealing. The analysis proceeds in the
context of the well-known job-shop scheduling problem, one of the most difficult NP-
hard problems encountered in practice. The large volume of prior research on the
job-shop| scheduling problem provides a diverse range of available algorithms and
problem instances, in addition to numerous empirical observations regarding local
search algorithm behavior; the latter are used to validate our behavioral models.

We show that all four local search algorithms can be modeled with high fidelity us-
ing straightforward variations of a generalized one-dimensional Markov chain. The
states in these models represent sets of solutions a given fixed distance from the
nearest optimal solution. The transition probabilities in all of the models are re-
markably similar, in that search is consistently biased toward solutions that are
roughly equidistant from the nearest optimal solution and solutions that are maxi-
mally distant from the nearest optimal solution. Surprisingly, the qualitative form
of the transition probabilities is simply due to the structure of the representation
used to encode solutions: the binary hypercube. The models account for between
96% and 99% of the variability in the cost required to locate both optimal and
sub-optimal solutions to a wide range of problem instances, and provide explana-
tions for numerous phenomena related to problem difficulty for local search in the
job-shop scheduling problem. In the course of our analysis, we also disprove many
conjectures regarding the behavior and benefits of particular algorithms.

Our research indicates that despite their effectiveness, local search algorithms for the
job-shop scheduling problem exhibit surprisingly simple run-time dynamics. Fur-
ther, we observe minimal differences between the dynamical behavior of different
algorithms. As expected given similar run-time dynamics, although contrary to nu-
merous reports appearing in the literature, we also show that the performance of
different algorithms is largely indistinguishable. Ultimately, our behavioral models
serve to unify and provide explanations for a large body of observations regarding
problem difficulty for local search in the job-shop scheduling problem, and identify
new research areas of the development of more effective local search algorithms.

The second research assistant, Laura Barbulescu, successfully defended her thesis proposal
during the grant period. She expects to complete her Ph.D. in 2004.

“QOversubsecribed Scheduling Problems” Ph.D. Thesis Proposal by Laura Barbuescu in
Fall 2002.
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5.4 Other Products

Software We have developed a prototype user interface in Java for the AFSCN scheduling
problem. The interface allows a user to inspect proposed schedules and make minor changes to

them.
We implemented state-of-the-art scheduling algorithms based on their descriptions in the

literature; the re-implementations are in C++ to be run under the Linux operating system.
The algorithms for JSP are:

Taillard’s Tabu Search with N1 Move Operator [14] is a local search algorithm that uses
a dynamic tabu tenure (a variable length list of recently visited states that should be
avoided). The N1 operator is designed for the JSP and guarantees that a path exists from
an arbitrary solution to some optimal solution.

TSAB Tabu Search with N5 Move Operator is a straightforward implementation of tabu
search in conjunction with periodic re-intensification around previously encountered high
quality solutions. Nb5 is generally a better move operator than N1 for the JSP, but it
does not provide the path guarantee. Our version is a modified version of the original
described in [21].

Simulated Annealing with N1 Move Operator is a stochastic, next descent local search
algorithm in which the likelihood of accepting the improving move increases as search
progresses. Our version is based on [32].

Simulated Annealing with N5 Move Operator is a variant of the original algorithm that
uses the N5 move operator.

The algorithms for AFSCN are:
Random Sampling creating a random permutation for a schedule.
Local Search using the shift and swap operators over permutations.

Three Satellite Interchange heuristic for moving tasks around in a schedule that inter-
changes three tasks [17]. This was developed for an earlier solution to the AFSCN prob-
lem.

GreedyDP extension of a one machine heuristic based on [12].

Split Heuristic heuristic developed in house for favoring low altitude satellites before high
altitude satellites.

We were able to obtain public domain versions of the code for the following algorithms:
Genitor A genetic algorithm developed by Darrell Whitley’s lab.
We will make our software available on request.

Web Site Our project web site is available at http: //www.cs.colostate.edu/sched/. From
that site, you can access publications, problem instances and generators from the project.
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